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0. Introduction

Multistate structure functions have been discussed by Barlow and Wu

(1978), El-Neweihi, Proschan and Sethuraman (1978), Griffith (1980) and

Block and Savits (1982). All of these papers have limited their discussion

to the case where the state space is finite.

In this paper we consider the situation where the structure function is

n
defined on some subset of R . Results similar to those obtained in the other

papers, especially Block and Savits (1982) are derived here. The complication

is that topological considerations must be considered.

In Section 1, we obtain an integral representation for a general multi-

state structure function on Rn. Properties of the upper sets associated

with the function are discussed and the integrand in the representation is

described in terms of the extreme points of its upper sets. This gives the

extension of the min path representation from the finite case. Minimality

of the representation is also demonstrated.

In Section 2, we consider the more difficult case of the function defined

nS
on some A c Rn. Results similar to those in Section 1 as well as bounds

are obtained.

The decomposition obtained in Sections 1 and 2 are applied to systems

of the type discussed by Barlow and Wu (1978). As a second application,

a representation for nondecreasing homogeneous functions is obtained.

In general we limit our discussion to sets A c Rn. By A0 , A and B(A)

we mean the topological interior, closure and boundary of A. For

= (Xl,9...'X n), Y (y y... yn) in Rn, x < x means xi < Yi for i = 1,...,n,

* < y means xi < y1 for i 1 1,...,n, and x <z means x < y and x y x. We also

define
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LQx) - {y: yz<x1, L(x) - {y: y<x },

UQ(X) = {Y: Y > }, UQ(x) = {Y: >x > }.
QX

Finally we say a function D: A - R n where A is a Borel measurable subset of

1Rn is a multistate monotone structure function (MMS) if 4 is Borel measurable

and nondecreasing (i.e., x < y implies O(x) < ¢(D!))" A set A c IRn is said

to be an upper (lower) set if xEA and x < (>) y implies yxEA.

Un
1. The 1R. Case

For purposes of exposition we first consider the special case of a

n
multistate monotone structure function 4: [0,-) - [0,-) which is assumed to

be right-continuous i.e. for each x LR n and for each e> 0, there is a 6>0 such

that for x<y < x + 61, If(x)-f(y) < e. Here we will obtain an integral represen-

tation for 0 in terms of binary valued functions each of which can be expressed

via its "min path sets". The min cut representation leads to technical diffi-

culties and hence will be deferred until Section 2.

1.1 Integral representation

Let D: [0,-)n - [Oc) be a right-continuous MMS. For each t > 0 we let

U = {x: O(x) > t}.
t -

(1.1) Proposition. Each Ut is a closed upper set and Ut c U for t > s > 0.

Proof. We need only show that Ut is closed since the other results are

obvious. Suppose that O(x) < t. It follows by right-continuity that there

exists z > x such that O(z) < t. Hence for every 0 < Y < z we have

(!) < t. Thus the complement of U t is open (relative to [0,) n  and so Ut

is closed.

L
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We now define a binary valued function by

(1.2) +(x,t) Iut (x) I(t)

for all t > 0, x > 0, where IA is the indicator function of the set A. It

is clear that for fixed t, 0 is Borel measurable and nondecreasing in x,

while for fixed x, 0 is left-continuous and nonincreasing in t. Also

4(x) > t if and only if (x,t) = 1.

The next result follows easily and is analogous to the finite state

decomposition given in Theorem 2.8 of Block and Savits (1982).

(1.3) Theorem. ¢(x) = [ (x,t)dt.
Jo ,

In order to obtain a representation of * in terms of its "min path sets"

we need to first investigate the nature of upper sets in more detail.

1.2 Upper sets and extremal points

We first list some elementary facts about upper sets.

(1.4) Proposition. Let A, {A(t): t E T be upper sets where T is some index

set (i.e., TcJR). 0

(i) u A(t) and n A(t) are upper sets.
tET tET

(ii) A = u U (x).
xEA

(iii) A and A° are upper sets.

Proof. 1he first two statements are obvious. Suppose now that x A . Then
there exist <x > c A with x n A. If y > 2, we setyv - x + (y- x). Clearly

-n -n ---- n -m -

yn E A and y. ) y; i.e., y E A and so A is an upper set. Suppose now that

0 '
x e A. Then there exists some 6 > 0 such that N6 (x) = {Z: Izi-xil < 6 all i}

c A. It thus follows that if y > x, then N6(y) c A because whenever zE N6(y),

z 0z>Z- Q-) E N6(x). HneZEA an so Ais an upper set.

zS
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Thus if A is any set, the intersection of all closed upper sets con-

taining A is a closed upper set containing A, which we call the closed

upper hull of A. It is the smallest closed upper set containing A.

We now introduce some further concepts analogous to the notion of ex-

treme points for convex sets. Let A be any upper set. We call x a lower

extreme point of A if LQ(x) n A = {x} and we denote the set of all lower

extreme points of A by EL(A). Note that EL(A) must be contained in the

topological boundary of A.

Before we prove our main result we need the following lemma.

(1.5) Lemma. Let A be a closed upper set in Rn = ro,c)n and let E (A)+ L

be its set of lower extreme points. Then x E A if and only if x > y for

some y E L (A).

Proof. Clearly we only need prove that if xc A then x> y for some ye E L(A). So

let x=(xl,...,xn)E A. Set y infO<x<x: (x,x2 , ... x )E A}. Since

A is closed it follows that (Y1,x2,...,xn) E A. Now set Y2 =inf{O < x < x2

(ylx,x3,... ,X) E A}. Again we have that (yl,y2,x3,.... xn) E A. Thus induc-

tively we can find y = (yl,... ,yn) < x such that (yl,... ,yi, xi+l,...,xn) )E A

for all i=l,...,n. We now claim that XEE L(A). Suppose that zEAnLQ(Y).

Then zE A and z < y < x. If z # y, then they differ in at least one co-

ordinate. Let the first such coordinate be i. Then zI 
=y1 ,... ,zi 1 =

y <xi" This implies that (yI"...,, i) E A.Yi~~~liZi _ .,ilZi+l , .. xn

But this contradicts the definition of y and so z = y. Hence y E EL(A).

(1.6) Theorem. Let A be a closed upper set in R . Then A is the closed

upper hull of its lower extreme points. Furthermore, we have A = U UQ(z).yEEL(A)Q
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Proof. Let B be the closed upper hull of EL(A) (i.e., B = n{U: U closed upper

set and U D E L(A))). Since A = u U (y) and A is closed, it follows that
L XyEA

A u UQ(Y) D B U uQ(Q). But according to Lemma 1.5,
LE (A) L (A)

A c u UQ(y) and we are done.
yE EL (A)

(1.7) Corollary. If A is a closed upper set in and I is its indicator

function, then

(1.8) IA(X) = max min a_ (x)
yEEL (A) l<i<n ' i

where ai,(x) = 1 if xi > t and 0 otherwise.

Proof. Now IA(x) = 1 <=> xE A <=> x > y for some yE EL(A) <-> aiY (x)= 1

for all i = 1,...,n, some y EL(A). S

(1.9) Remarks. (i) If we restrict x in (1.8) to IR+ , then we need only take

the minimum over all i such that yi # 0; (ii) the results (1.5), (1.6) and

(1.7) remain valid for any closed upper set in lRn which is lower bounded 5

i.e. there is a yR n such that y<x for all x in the set; (iii) in case A

is an open upper set in I n which is lower bounded we have the analogous re-

sult that A U U Q(y). •
yeEL (A)

This is true since if x EA and A is open, there exists some z < x with

z E A c A. Hence there exists y c EL(A) = EL(A) such that y < z by Remark (ii)

0Sapplied to Lemma 1.5. Consequently x e UQ(y). On the other hand, if

x UQ(y) for some y E EL(A), then x > y. But y E A and so there exists

<Yn > c A with yn - y
. Thus eventually x > yn and so x E A.

S
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We conclude this subsection by showing that the representation (1.8)

is minimal.

(1.10) Theorem. Let A be a closed upper set In R . Suppose we can write

I A(x) = max min ai (x)A EE 1<i<n i'

for some subset E of R . Then E : EJA).

Proof. Let Z E EL(A). Since z E A, IA(z) = 1 and so there exists some

y e E such that a. (z) = 1 for all i - 1,...,n; i.e., z > y. Now if1,yi -_

. y, then y i A since LQ (z) n A = {z}. But then IA(x) = 0, which contra-

dicts the above representation assumption. Hence z = y and so E D EL(A).

1.3 Min path representation

We now combine the results of Sections 1.1 and 1.2. Let D:[0,-) n - [0,-)

be a right-continuous MMS. Then according to Theorem 1.3 we have

= (xt)dt for all x EIR, where 4(xt) = I (. But from (1.8)
C~ -+' U

and Remark (1.91) we can write

(1.11) (x,t) = max min a (x)
EPt i:yi# 1 i y i 

-

where Pt = L (U). Note that y E Pt if and only if ¢(x) > t and D(z) < t

for all z < y, z y . Thus we could call such y an upper critical vector

for level t of (D and {i: yi#0 the corresponding min path set. Hence the

result (1.11) is analygous to the min path representation in the finite

state case.

2. Generalizations

In order to obtain a min cut representation for € in (1.2) and also in

order to be able to deduce the known results for the binary or finite state

case we are forced to consider a more general setting. So let D: A - [0,-)

be an MMS.
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Before we consider the min cut representation, we must first rederive the

results of Section I in this more general context. A subset A c A is said

to be an upper set in (or relative to or with respect to) A if x E A and

E A with y >x implies that Y E A. A subset B c A is said to be a lower

set in A if AB is an upper set in A. Note that A is upper set in A if and

only if A = U n A where U is an upper set (in e). To see this simply set
U = x UQ(X) "

XEA

2.1 Integral and min path representation

Let P: A - [0,) be an MMS. As before we set Ut= ixEA: 4(x) > t) for

all t> 0. Then U is a Borel measurable upper set in A and U c U if-- t t s

t > s > 0. If we set (x,t) I (x I o,(x)](t) for t > 0, X E A, then

4° has all the properties as in Section 1; i.e., for fixed t, is

Borel measureable and nondecreasing in x on A and for fixed x, 0 is left-

continuous and nonincreasing in t> 0. Clearly the following integral repre-

sentation is still valid.

(2.1) Theorem. For x E A, (D(x) = f(x,t)dt.
0

(2.2) Remark. It is sometimes convenient to consider the following alter-

native representation. Let u)t  xfA: O( > t1 and set Ext) I X)

I[0,O(x))(t) for t > 0, x E A. Then OW = E(x,t)dt. Note that t

for fixed x, E(x,t) is now right-continuous in t > 0. Note also that

E <.

(2.3) Proposition. Let A and {A(t): tE T be upper sets in A.

(i) u A(t) and n A(t) are upper sets in A.
tE T tET

(ii) A =xUAUQ (x) n.

(iii) If A is a product set, then the closure of A in A and the interior

of A in A are upper sets in A.
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Proof. Again we need only prove (iii). Now the closure of A in A is An A.

So suppose xEAn A and y > x, YE A. Then there exists <x > c A with x x.

Set = x v y. Since A is a product set, n E A and so yEAn A because yn-y.
M _

Let B be the interior of A in A. Suppose xE B and y > x with y E A. Then

there exists > 0 such that N6(x)n AcA where N,(x)= {w:Ixi-wi < 6 all i}.

We will now show that N6 ( y ) n Ac A also and hence Y E B. For let z E N6 (y ) n A.

We define w = (wl,...,w n ) by w. = z. if z. < x. and w. = x. if z. > x..

Since A is a product set, wE A. Also z > w. Thus if we show that wE N 6(x),

we are done. But Ixi-wiI = 0 if z > x< and, if z i < xi, Ixi-wil = Ixi-zil =

xi-z i < y -z < 6.

(2.4) Remark. It is not hard to show that (iii) fails if A is not a pro-

duct set.

Now let A be an upper set in A. We say that ZE A is a lower extreme

point of A relative to A if LQ(y)n AnA = {y}. We denote the set of all lower

extreme points of A relative to A by E (A). Here A is the ordinary closure

of A and so An A is the closure of A in A.

In order to obtain the corresponding version of Lemma 1.5 we need that

A is complete in Rn. Henceforth we will always assume that A is a closed

subset of Rn.

(2.5) Lemma. Let A be a closed upper set in A which is lower bounded in

A (i.e., there is an xEA such that x<y for all yEA). Then for xEA, it

follows that xEA if and only if x>y for some yE ELA(A).

Proof. Again we need only prove the "only if" part. So let x= (xI ,... ,xn) )E A.

Define w 0 x and set A = AnL (w ). Its projection B1 = T A where
Q 1 1

IT 1(Z 1 ,...,z) f zI is thus a nonempty subset in IRlwhich is bounded below.

Let Y, inf B1 . Hence there exists x f (Xlm ,. . .,x ) E A1 c A such that
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X m yl as m - . But the sequence <x m > is bounded in JR and so has a con-

vergent subsequence. Let w be its limit which lies in A since A is closed.
1 o 1 1QWI

Note that w < w 1and w 1 Y < z for all zEA. Now set A AnL (w) and
Not tIt w and - V 2 = Q

let B2 2 A2 be its projection where 2n(Z,...,Z = z2. By the same argument,
2 2

there exists w 2 A such that w2 = Y < z for all z (zAZ...,zn)E A
2 2 y2 - fo all n 29z,2,. z

where y2 = inf B2* Continuing by induction we find that for each i = 1,...,n

i i-1 i
there exists w EA i = AnL (H )such that w. = yi < z. for ll z= (z,..., )EA.-- -- 1 -- 1 -

o 1 n
where yi = inf 7T.A.. In particular, then, x = w > w > w . We have

11 _

n (
= W . We claim that E EA). For suppose that ZE A n L . hen z <X

and ZE A. If z # y, then it differs in at least one compor Suppose that
* i-I

Zl = Y1 .... Zi-l=Yi-l zi<yi" Since z < y, we also have that z < w . But

i
zi < yi contradicts the definition of w . Hence z = y.

As an immediate consequence we get the following theorem.

(2.6) Theorem. Let A be a closed upper set in the closed set A which is

lower bounded. Then A = u .U () n A and

YXE A (A)Q6L

(2.7) IA(x)= max min tiY (x) for xe A.
YEA l<i<n i
xCE(A) - -

(2.8) Remarks. (i) Let A be as in Theorem 2.6 and suppose we also have that

I (x) = max min . (x) for xE A. Then it is easy to show that if E is
A - eE l<i<n 1'Yi

a subset of A, E o EA(A); (ii) If we allow E, however, to be a subset of in,

then it is not necessarily true that E D E (A) unless A is a product set.

If we combine the above results we get the following consequence. Let

A - [0,-) be an MMS. Tien

(2.9) (x= _(xEt)dt

00p
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where O(x,t) = t(x) and Ut = {xEA: D(x) > ti. Now if A is closed and lower

D t
bounded and if D is upper semicontinuous on A, then Ut is a closed upper set

in A which is lower bounded. Hence we can write

(2.10) (x,t) = max min a. (x) for XE A
YzEPt l<i<n I'Yi

where Pt = E (U ). We summarize below.
t L t

(2.11) Theorem. Let A be closed and lower bounded inIRn and let D: A [0,=)

be an upper semicontinuous MMS. Then (2.9) and (2.10) are valid.

We call (2.10) the min path representation for p on A.

2.2 Special cases

Even though we have obtained a min path representation for P on A, a

min cut representation is not immediate. The problem is that although the

complement of Ut in A is a lower set in A, it is in general open and not closed

in A even if we assume that ( is continuous. The material in the previous

section does not extend easily to open sets. One interesting case where the

complement is closed occurs when A is discrete. We shall consider this case

here. We also show how we can obtain useful bounds on the system performance

by making use of the alternative representation (see Remark (2.2)).

Let B c A be a lower set in A. We say that z A A is an upper extreme

point of the lower set B relative to A if U (Z) n En A = fz}. The set of all

upper extreme points of B relative to A is denoted by EA(B). The following

results are proved in an analogous manner as (2.5) and (2.6).

(2.12) Lemma. Let A be a closed set in ]Rn. Let B be a closed lower set in

A which is upper bounded. Then for XE A, it follows that XE B if and only

if x < z fcr some zE EA(B).

SU
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(2.13) Theorem. Let B be as in Lemma 2.12. Then B = L(z) n A

and 
so

(2.14) I B(x) = max min . (x) for xE A
ZEEil(B) 1<i<n 'zi

where B (x) = 1 if x. < t and 0 otherwise.

(2.15) Remark. It should be noted that the a defined in this paper is not

the same as the S in Block and Savits (1982).

Suppose now that P: A [0,o) is an MMS. Recall the representation

D(x) = (xt)dt

where p(x,t) = I (x) and Ut 
= (x: (x) > t}. We also have the alternative

U- 
t

representation (see Remark 2.2)

_(x) = V(x,t) dt

where xt) = I (o) (x) and iU(o)(x) = Ix: cP(x) > t). Set L t  {x: D(x)< t}
w t t _ _ _ . = _ _ _

and L (0) {x: D(x) < t} Both L and L(O) are lower sets in A.
t t

(2.16) Theorem. Suppose A is a finite set in n and 4: A - [0,-) is an MMS.

We then have the dual representation

(2.17) (x,t) = max min a. (x) = min max i. (x)
YEPt l<i<n 'Yi zEK(o) -i_ __n 1

-- t
EI ( o) A (0 ) , n (0 ) tx

where Pt = EA (U ) K(o) = EU(L and ao (x) = 1 if and only if x. > t.

Proof. We only need prove the second equality because of Theorem 2.11.

Since A is finite, Lt(o) is a closed lower set in A which is upper bounded.

Hence, by'Theorem 2.13, we can write

1
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I (x) max min (x).
L (0) ) (o) l<i<n iz -

Frt AE% (L t)

Consequently,

*(x,t) = i-I aX) = tin max (1- 8 (x))
L (o) l<i<n

- t

= min max a°().
(o) 1<i<n is-q -t

In the finite case, then, we have both a min path and a min cut representa-

tion (compare with Block and Savits (1982)).

In the general case, however, the set L (o) not closed. However if

we assume that 4 is continuous, the set L will be closed.
t

(2.18) Theorem. Let ( be a continuous MMS on a compact set A. Then we have

for t > 0 and x E A

(2.19) p(x,t) = max min a > (x,t) = min max a o) (x)
ZEP l<i<n i zEK 1<i<n i --

t --- t

where Kt  E(Lt) and the other quantities are as in Theorem 2.16.

Proof. Since P is continuous and A is compact, the set Lt is a closed lower

0 set which is upper bounded. Everything follows as in the proof of Theorem

2.16.

Although the representation (2.19) is not exactly what we desire, it

does allow us to give bounds on the system performance function.

Let X - (Xl,...,Xn) be a state vector, i.e., X: Q - A is a random vec-

tor. For each i, set Fi(t) = P(Xi<t) and Fi(t) = 1-Fi(t). Let P be a

* continuous MMS on A and assume A is compact so that (2.19) holds. We let

F(t)- P((X) < t) and F(t) = P($(X) > t). We also let F(t-) = P($(X)>t).

S
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(2 20) Theorem. Let 0 be a continuous MMS on a compact A and let t>O.

The following bounds always hold:

n
sup P(n {Xi yi) F(t-)

XEPt i=l

and

n
F(t) < inf P(u {X i>z i).

zEK i=l

In order to obtain further bounds, we need some preliminary definitions.

(2.21) Definition. Let A < en. We say that XE A is biregular if for every

4 6 > 0, there exists u,v E A such that (l-6)x < u < x < v < (l+6)x. A measure U

on A is said to be biregular if we can write A= 0U A1 U A2 where A0 is count-

able, u(Al) = 0 and every XE 42 is biregular. A random vector X: Q - A is

called biregular if the induced measure v = PoX 1 is biregular.

(2.22) Remark. Clearly every random vector X on a discrete compact set A

is biregular.

(2.23) Definition. Let {at: tE T} be a collection of real numbers. We define

H a - inf l a
tt

tET ScT teS
S finite

t at sup a t"

S finite

(2.24) Theorem. Let D be a continuous MMS on a compact Ac En and suppose that

X is biregular. Then for all but a countable set of t, we have the following

results:

6 p
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(a) If the X% are associated,

n (n
z P( u {X > z 1) < F(t) =F(t-) < n {X1>y iD.

i=i i1l

(b) If the Xi are independent,

n n

i F(zi) < F(t)= (t-) < =1> =IF(Yy) "

z__EK i=l t

Proof. Since (b) easily follows from (a), we only prove (a). Now for every

t> 0, we have U t = xEA: 4(x) > t} D {XEA: 4(x) > t} = J0. Since Et =

Ut t - {X_EA: 4(x) = t), it follows that P(XE ) = P(XEL0) ) except for
t ~t (o) = 0

possibly countably many t. We now only consider such t. But u t  = U

(o) m=l t-I-
and so given e > 0 there exists an m such that P(XcU )<P(XUtg1)+. We m

1 m
set s = t +-. Note that U is a compact upper set and Ut = u UQ(y)nA where

AYO P t -

Pt = L (U ). We now use the assumption that X is biregular. Thus

A 1 0 U A I U 2 with A0 countable, P(XE A = 0 and every sE A2 is biregular.
* *

We choose a finite subset A0 c A0 and a compact subset A2 C A2 such that

P(X EA -As) <e and P(X A2 -A2 ) < e. We thus have

F(t-) = P(Xcu t) E P(XU(t<P(Xc U )+E

* < P(X6U nA0) + P(XEU nA2) = 3e
* 0 S 2

Suppose that x cU n A 2. Then 0(x)> s>t. By continuity of D and the fact thats- 2

x is biregular we can find uE A such that u <x and 4(u)> t; i.e., uEU t.

Hence there exists yE Pt with y < u which implies that xE U0 (y)n A. Thus
-

n A: yE Pt is an open cover of the compact set Us n A Let
0 1 om * m

UQ (Y ),...,UQ( ) be a finite subcover: U nA c U (Y ) n A. Also since

A is finite, there exist finitely many y +1.... ly P such that
0 t

p j
- p

U 8n A 0cu U ( ) n A. We may thus write F(t-) < P(Xc U U (y ))+3e
S 0 jsM+l J-1 -
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Since the X 's are associated we obtain
U -i

p p n

F(t-) < if P(X eUQ (_)) +3c- I P( n {Xi>yJ}) +3c
j i jul i=l

n
< J. P( n {Xi>Yi}) +3 c.

3t i=

Since e was arbitrary, we are done.

A similar argument works for the lower bound.

3. Applications of the Decomposition

3.1 The Barlcw-Wu structure function

As in Block and Savits (1982) we assume there is a binary coherent sys-

tem with min path sets P,... Pp and min cut sets K.,... IKk. Then we define

(3.1) 4(x) = max min x, = min max xil<r<P iEP l<s<k iEK

where 0 < xi for i = l,...,n. Here xi need not be integer valued as in

Block and Savits (1982). The function e(x) is the analog of the structure

function considered by Barlow and Wu (1978).

First it is clear that c(t x) = t c(x) for all t > 0. Thus as in

Section 1

C(x)- = W (x,t)dt

where C(x,t) - I [0,(2x(t)_ IUt () and Ut = {x: (x) > t}. Now it is easy

to see that Ut = tU1 and so t(x,t) - 4(t- x,l)for all t > 0. Also

EL(Ut) = {z: LQ(Z) n Ut - z}-= 1z: r(z) > t and for x <z, c(x)< t}

* = ttz: 4(z) > I and for x< z, 4(x) < l} = t E(U

(3.2) Theorem. 4(x) - fo (x,t)dt where
0p
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C(x,t) (X)= max min (x)
- = - EE (U )l<i< ' iL-t

= C( C x))

where a (x) = ( (x),... ,a x)).
t n~i,t

Proof. The first and second identities follcw from Theorem 1.3 and 2.6.

Tb establish the last equality we have by the arguments immediately pre-

ceding the theorem that

r(X,t) = C(t- x,l) = max min a (t x).
yEE L (UI1) 1<i<n

Now (X: E EL(U)} = (min path vectors corresponding to PI,...,P r as is

easily demonstrated. Thus

(x,t) = max min ac (t - x)

= max min a (x) W (aCt Wx).
l1t <_p iEP

r

(3.3) Remarks. i) The above result is the generalization of Lemma 6.3 and

Theorem 6.4 of Block and Savits (1 82). The connection is clear if we no-

tice that Ck(ct(z)) of that paper is C(x,k).

ii) A similar result is possible in terms of the min max representation if

we have (3.1) for 0 I < Mi , i -l,...,nby using (2.9).

* 3.2 Representation for homogeneous functions

In the finite state case discrete functions of the type (3.1) have been

characterized in Block and Savits(1982). In the continuous case a similar

0 but more general result can be obtained for homogeneous functions.
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(3.4) Theorem. Assume D:[0,-) n  [0,,) is a right continuous nondecreasing

function such that (t x) = t O(x) for all t>O. Then

D(x) = max min y'ix i

YXEL(Ul) Yi 0  1

where EL (U) = {y: 4(y) > I and forx y , (x) < I.

Proof. From Theorem 1.3 we have

rcr
(x) J (x,t)dt

Jo

where 4(x,t) = It (x) and Ut {x: 4D(x) > t. Then by Remark (1.9i) we have

for t > 0

(x,t) = max min a (x).

YzEE (Ut) Yi 00  '

By arguments similar to those preceding Theorem 4.1 we have for t > 0

4(x,t) = max min a (t-x).

YEEL(U) Y0 0  'Yin -

By a straightforward argument it follow that

[(x,t) = [0, max min yi (t)
yEE (u1 ) yi 0

and so

f-1
O(x) = O(x,t)dt = max min yixi.

0f y'EL (UI) yY 0

(3.5) Remarks. i) It is easy to check that the condition of Theorem 3.4 is

equivalent to the condition Ut = t U1 for all t > 0.

ii) A similar representation is possible using the dual representation of

Section 2.2 under the appropriate assumptions. In particular from (2.19) p

for x i A = {x: 0 < xi  M, i = 1...,n),

(x)- 0FV(x,t)dt
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where

E(x,t) min max a(0)  (x) for X E

ZEE l<iAn ('L fr xzi t

and it follows similarly that

-1
D(x) = min max z1 xi  for x E A

z _ _ E A ( L i i <_ _

where z- x 
= 

X

1 if xi>O and zi  0.

I 'I
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